The first "car" built in America was a horse buggy with a 4-hp, single-cylinder engine, assembled by Charles and Frank Duryea in 1892-93. Their second car won America's first auto race, a 50-mile, nine-hour marathon from Chicago to Evanston, Ill., on Thanksgiving Day, 1895.
Ransom Eli Olds built a three-wheeled steam car in 1891 and a gasoline buggy in 1897. By the turn of the century he was mass producing his curved Dash Oldsmobile, selling 2100 of them in 1902 and 5000 a year by 1904, when he left Oldsmobile to found the REO Motor Car Co. Henry Ford perfected the assembly line, but Olds had introduced mass production and popularly-priced cars to America.
The first practical, factory-produced automobiles were little more than motorized horse carriages. A tiny one-cylinder motor under the seat drove through a chain, and you steered with a "tiller," like a coaster wagon. Nothing to it. It was enough to be getting around a little faster than a horse could take you. And the car didn't get tired after a few hours.
Within a few years, automobiles had taken on the general configuration we know today. That is, a multi-cylinder engine in front, clutch and transmission under the front floor, shaft drive to a live rear axle, leaf springs on all wheels, foot-operated brakes, steering by wheel and gear linkages, and pneumatic tires. Advanced developments that came in this early period before World War I included electric starters, shock absorbers, four-wheel brakes, all-steel bodies, helical gears, pressure lubrication in engines, automatic spark advance, demountable rims and fabric cord tires.
Despite these early advances, there were some tough unsolved problems that made "automobiling" a definite challenge. Tires wore out fast and blew out at every opportunity. Gasoline was more like kerosene, and oil was like molasses. Cold-weather driving was hardly practical. Alloy steels weren't very strong, so axles and springs frequently broke in deep ruts. The electric starter made it possible for women to drive -- but they still had to cope with the balky transmission and heavy clutch. Electric cars were recommended for ladies.
Engine maintenance required constant attention. Valves needed grinding and rings and bearings needed replacement every few months. Sparkplugs and ignition points were iffy, even when new. Cylinder heads had to be removed to dig carbon out of the chambers, and oil sludge could be scooped out of crankcases by the handful. Actually, automobiles were rich men's playthings in those early years.
Henry Ford's famous Model T changed all this in the period around WWI and the early 1920s. Here was a car that combined most of the worst mechanical faults of its contemporaries -- and yet it was a milestone development of automotive history. The secret: The first successful use of assembly line mass production. Ford popped out millions of the things over a 20-year period, with only minor changes in design. This not only brought the price down to where anybody could afford one, but it filled the junkyards with an endless supply of dirt-cheap interchangeable parts that you could bolt together to keep your T on the road indefinitely. Crude as it was, the Ford Model T literally put America on wheels.
The decade of the 1920s was a time of refining basic principles. Or, honing the crude ingredients into something resembling easy, comfortable dignified transportation. For instance, the introduction of the "ethyl" lead additive for gasoline in 1923: This allowed a two-point jump in compression ratios overnight, which helped both performance and fuel economy. The '20s also saw the switch to closed sedan bodies for family cars, sometimes even with the luxury of a heater. A 6- or 8-cylinder engine rested on rubber mounts to reduce vibration, with hydraulic shock absorbers and low-pressure "balloon" tires to cushion the road. Other refinements that occurred in the '20s included such things as automatic chokes, easy-shifting synchromesh transmissions, automatic chassis lubrication, power-operated windshield wipers, vacuum-assisted clutches and even the first crude experiments with power steering.
Engineers remember the 1930s mainly for tremendous improvements in the ride quality of American cars. Two major breakthroughs brought it about: Engines were moved forward between the front wheels. This not only gave more passenger space, but the engine mass far forward smoothed out the pitch frequency. The car floated instead of bouncing. Another trick was independent front suspension on coil springs. Remember GM's "Knee Action"? Getting rid of the heavy beam front axle not only reduced the oscillating mass of the front wheels for better ride, but eliminated shimmy and feedback in the steering. Cars had an entirely different feel overnight.
These changes also brought a revolution in body styling. Shortening the hood and moving the passengers forward allowed modern "fastback" lines, with grilled radiators and skirted fenders. Chrysler had a disastrous experience with aerodynamics in 1934 -- its Airflow model just didn't sell -- but cars like the 1936 Lincoln Zephyr set styling patterns for years to come.
The modern-car image got another boost in 1939, when Oldsmobile introduced the first fully automatic transmission -- a fluid coupling tied to a self-shifting, four-speed planetary gearbox. All you had to do was put the shift lever in DRIVE, step on the gas and go. The American family car was never the same after that. After WWII, automatic transmission development mushroomed in all directions -- torque converters two-speed gearboxes, geared turbines. By the mid-1950s, automatics were ordered on the majority of all family cars.
The '50s also will be remembered for the horsepower race. After Olds and Cadillac introduced the modem shortstroke overhead-valve V8 engine in the late '40s, the whole industry seemed to go crazy for performance, power, and luxury. Family cars were considered social prestige symbols in those days, so you needed a muscular engine to heft around all that chrome and sheet metal. Within 10 years, the typical car weighed over 2 tons and packed 300 hp in a big-inch V8 that gave only 10 or 12 mpg. The package also included an automatic transmission, power steering and power brakes. Not bad cars -- but big and gaudy.
Auto enthusiasts like to remember the 1960s for 400-hp factory "muscle cars" and unrestrained industry wooing of a lucrative new youth/performance market. And there were some wild developments here. But it was also the decade when family automobiles were upgraded with such luxuries as air conditioning, power seats, power windows, individual bucket seats, automatic headlight dimmers and fold-down seats in station wagons.
Ride smoothness and silence were helped by the general adoption of coil spring suspension on all wheels, ultra-low tire pressures and isolating the body on a flexible perimeter frame that actually acted as a crude spring to soak up road harshness.
The whole scenario changed in the 1970s. Suddenly, it was the federal government telling the companies how to design cars -- in the form of tight laws to control exhaust emissions, and new safety standards to improve highway crash survival. New regulations came almost faster than the engineers could keep track of them.
When this trend was combined with the unexpected Arab oil embargo in 1973, the whole direction of auto design changed overnight. Long-range planning was impossible. Gasoline prices were doubling every few months. At the same time, federal emission standards often required engine modifications that hurt fuel mileage, while the new safety standards added economy-killing weight. For several years in the mid-'70s, U.S. automotive design was in a state of chaos.
However, Detroit has integrated traditional American luxury and gadgetry into smaller, lighter cars that can meet government and market requirements for fuel economy.
Take the recent trend to front-wheel drive with transverse engine placement. This gives maximum passenger and trunk space with minimum external size and weight. The strong trend to electronics is a natural result of exhaust emission regulations that have required sophisticated computerized feedback control of fuel metering. Federal emission and mpg standards have forced us to electronic -- and tomorrow's car will make the best of it. We haven't seen anything yet!